

Technological Advancement in Waste-to-Resource Recovery: Promoting Circular Economy and Environmental Sustainability

Eepsa¹, Hukam Chand

Department of Environmental Science, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan-173230 (H.P.) India

 hukamevs2008ysp@gmail.com

**This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)*

ABSTRACT

Rapid urbanization and population growth have driven global municipal solid waste (MSW) generation to about 2 billion tonnes annually, projected to hit 3.8 billion tonnes by 2025, overwhelming conventional management systems. This article explores key waste processing technologies, including waste-to-energy (WtE) options like incineration, pyrolysis, gasification, and biomethanation, plus resource recovery methods such as composting, vermicomposting, plastic-bitumen roads, and cullet production. Emerging tools like AI recycling robots, solar compactors, and biochar from MSW promise greater efficiency, while addressing India's challenges - low collection, poor segregation, and infrastructure gaps - through circular economy strategies and policy support.

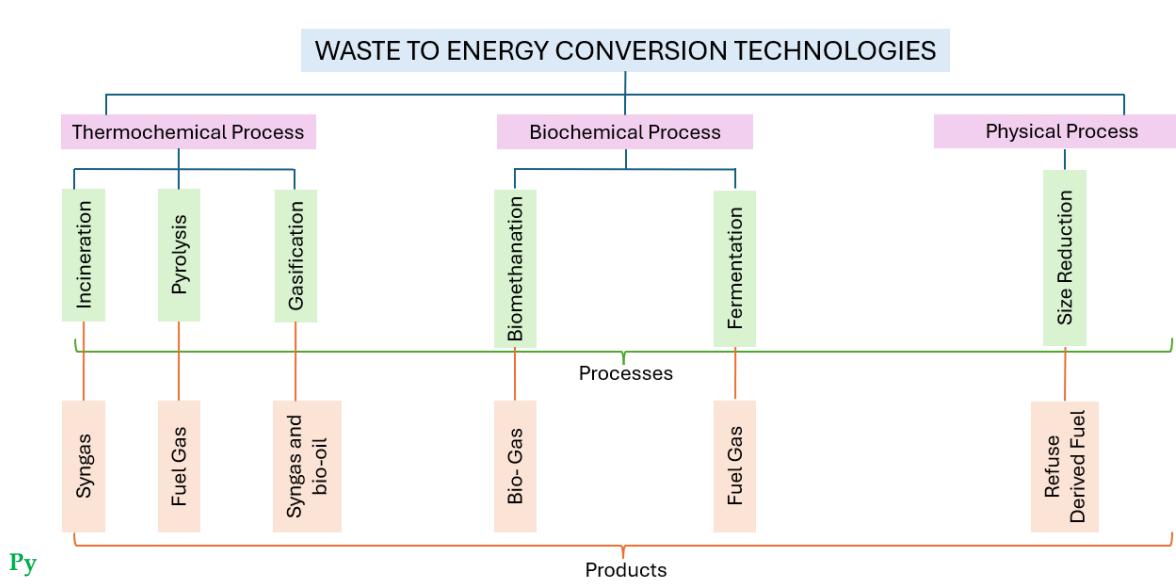
Keywords: Waste-to-energy, recycling robots, circular economy and resource recovery.

Introduction

Rapid socio-economic transformations driven by population growth, accelerated industrialization, large scale migration and expanding urbanization have resulted in a substantial rise in waste generation. As living standards improve and consumption patterns shift, the per capita waste load continues to escalate, placing increasing pressure on already strained waste management system (Alsulaili et al., 2025). The challenge is not merely the volume of waste produced but the need to manage it in sustainable manner. Globally, MSW generation has reached approximately two billion tonnes annually, with about 33% not collected by municipal systems (Zhang et al., 2024). Projections by United Nations Environment Programme (UNEP) indicate that the volume could rise to 3.8 billion tons by the year 2025.

The life cycle of waste is inherently complex, involving stages like collection, segregation, transportation, processing, recovery and disposal. A significant proportion of municipal waste remains recyclable and recoverable, providing opportunities for resource conservation and the development of circular economy pathways. Waste can also undergo energy conversion through thermal processes such as incineration, pyrolysis and gasification, enabling simultaneous waste volume reduction and energy generation. Modern and artificial intelligence solutions are being implemented in waste management systems. The use of intelligent tools will allow waste management to be more efficient (Czekała et al., 2023). As the global community transitions towards circular and low carbon development models, waste processing technologies have become essential in minimizing environmental burdens while maximizing resource recovery and energy generation. This article critically examines current and emerging waste processing technologies, highlighting their performance, limitations and potential to contribute to resilient and future ready waste management systems.

Waste Processing


Waste Processing Technologies refer to the diverse array of engineered systems and methods utilized to manage, treat, and convert discarded materials into either valuable secondary resources, useful energy, or environmentally benign residual matter. These technologies are crucial operational components of the circular economy, enhancing the efficiency of energy recovery (ER) from waste, transform 'as generated' waste to the form suitable for final disposal and provide for high safety and avoiding any significant burden to the environment and population. Broadly these outcomes are achieved through two major pathways-

- Recovery of Waste to Energy (WtE): Conversion of waste into heat, electricity, biogas, or fuel products through thermochemical, biochemical, or physical processes.
- Recovery of Waste to Resource: Extraction of recyclable materials, compost, biochar, construction aggregates, and other value-added products, enabling closed-loop material cycles.

Waste to Energy Conversion Technologies:

Incineration: Incineration is a thermal waste treatment technique with the primary objective of volume reduction and energy recovery from the waste stream.

1. Takes place in a furnace at high temperatures ranging from 900°C to 1200°C
2. Reduce the volume of solid waste up to 70% and 90% (Chen et al., 2022)
3. Preventing the production of CH₄ gas
4. Due to the presence of high organic matter, high moisture content (~50%), and low calorific value, the Indian MSW is not much suitable for WTE generation using incineration technology (Joshi & Ahmed, 2016).

Pyrolysis: Pyrolysis is a process that decomposes organic materials, such as biomass or waste, at high temperatures in the absence of oxygen, resulting in the production of biochar, bio-oil, and syngas (Du et al., 2021).

- Often carried out at temperatures between 300–650°C
- Pyrolysis of biomass produces three products:
 1. bio-oil
 2. bio-char
 3. syngas

Gasification: Gasification is defined as a process that converts carbonaceous materials into syngas, primarily carbon monoxide and hydrogen, through high-temperature partial oxidation (Yang et al., 2021).

- Temperature ranges between 500 °C and 1400 °C
- High reduction in waste volumes, and fewer requirements for cleaning of flue gas.

Biomethanation: Biomethanation is a process by which organic material is microbiologically converted under anaerobic conditions to biogas (Dogan and Demirer, 2012).

- Three main physiological groups of microorganisms are involved: fermenting bacteria, organic acid oxidizing bacteria, and methanogenic bacteria.

- This process consists in the injection of H₂ into an anaerobic digester, using the capacity of indigenous hydrogenotrophic methanogens for converting the injected H₂ and the CO₂ generated from the anaerobic digestion process into CH₄.

Fermentation: Waste fermentation is defined as the microbial process that converts organic waste materials, such as food waste, into valuable bioproducts through various fermentation strategies (Arniello et al., 2023).

Advantages

- Renewable Energy Production: Generates biogas (CH₄) usable for electricity, heating, and cooking.
- Reduces Waste Volume: Converts large amounts of organic waste into usable energy.
- Low Environmental Impact: Cuts methane emissions from open dumping and landfills.
- Produces Valuable By-product: Digestate can be used as an organic fertilizer.
- Cost-Effective for Municipal Waste: Works well with kitchen waste, sludge, and agricultural residues.

Waste To Resource Conversion Practices:

Plastic-bitumen technology: This technology involves blending shredded waste plastics with hot bitumen to enhance the strength, durability, and life of road surfaces (Hake et al., 2020).

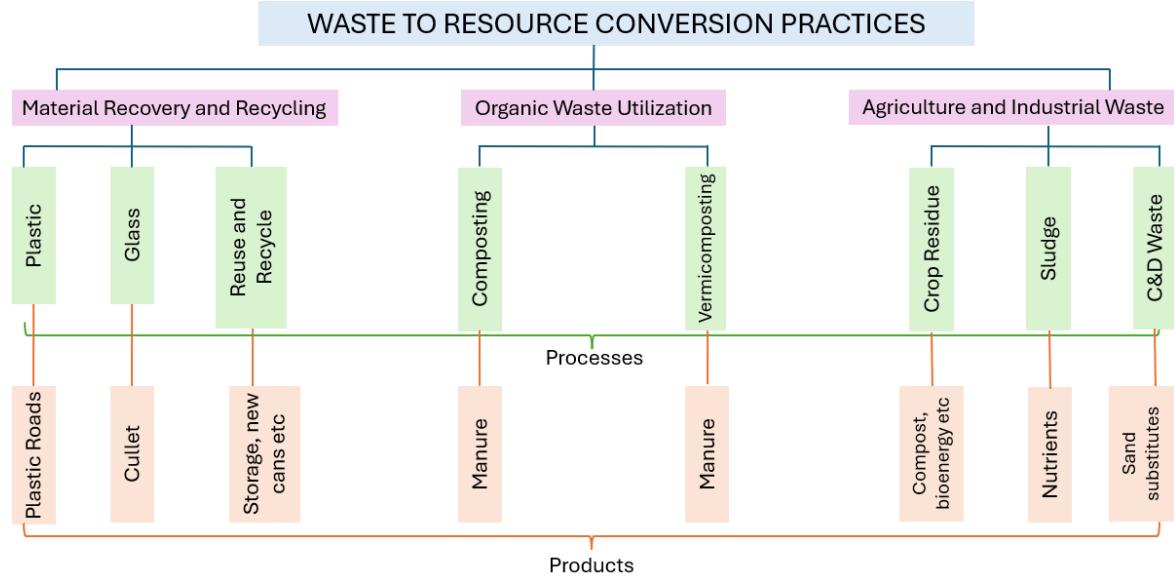
Working-

- Waste plastics (carry bags, wrappers, films) are cleaned, dried, and shredded into 2–4 mm pieces.
- These plastic shreds are added to hot aggregate at 160–170°C, where they melt and form a coating over the stone.
- Bitumen is then added, and the mix is used for road construction.
- Plastic acts as a binding agent, improving the adhesion between bitumen and aggregates.

Cullet manufacturing: Cullet manufacturing in India involves processing glass waste by collecting, sorting it by color, and crushing it into smaller pieces called cullets (Favaro and Ceola, 2021). The cullet is used to replace a portion of the raw materials like

- Sand,
- Soda ash, and

- limestone in new glass production, building material leading to energy savings and conservation of natural resources


Recycle: Processing waste materials into new products through physical or chemical transformation. It helps recover raw materials and reduce the use of natural resources.

Examples

- Recycling plastic into pellets
- Paper into new paper
- Glass bottles into new glass
- Metals into new metal products

Composting and Vermicomposting:

Composting and vermicomposting transform biodegradable municipal solid waste (MSW) organics into nutrient-rich soil amendments, reducing landfill volume by up to 50% and cutting methane emissions. Composting relies on microbial decomposition (mesophilic at 45°C then thermophilic at 55-60°C for pathogen kill), completing in 3-4

months with *Bacillus*, *Clostridium*, and fungi active. Vermicomposting accelerates this using epigeic earthworms like *Eisenia fetida*, ideal for household/garden wastegf.

Composting Process

Process starts with mesophilic bacteria oxidizing organics to CO₂ and heat, shifting to thermophiles at 60°C for 3+ days to destroy pathogens, followed by curing (2-8 weeks). Optimal decomposition occurs at 55-60°C; excess heat slows it, yielding dark, earthy compost after 3-4 months. Advantages include renewable fertilizer production, odour control, and suitability for kitchen/agricultural residues, though requires space and moisture management (50-60%).

Vermicomposting Process

Vermicomposting mirrors composting but earthworms enhance breakdown, consuming 50-75% of organics daily via gut microbes, producing castings richer in NPK (1.5-2x higher than traditional compost). Setup involves bedding (shredded paper/cardboard), pre-composting waste 10-15 days, then adding worms at 1 kg/ton waste; harvest casts after 45-60 days. Effective for decentralized MSW (e.g., bungalows/institutions), handling leaves/grass clippings with minimal odour and faster nutrient stabilization.

Both techniques divert 30-50% of MSW organics, produce pathogen-free fertilizer, and support circular economy, with vermicompost superior for soil microbes/heavy metal stabilization. Challenges include source segregation needs, initial odours, and worm sensitivity to salts (>4%) or temperatures >35°C in vermicomposting. In India, integration with biomethanation boosts viability for high-moisture MSW.

Emerging Technologies in Solid Waste Management

Biochar from Municipal Solid Waste (MSW): Biochar is a carbon-rich material produced when organic waste (food waste, yard waste, agricultural residues) is heated in the absence of oxygen (pyrolysis).

How it works in waste management:

- MSW containing organic matter is dried and pyrolyzed.
- This produces biochar, syngas, and bio-oil.

Importance:

- Biochar improves soil fertility, retains nutrients, and enhances water retention.
- It immobilizes heavy metals, helping in remediation of contaminated soils.

Pello: Pello is a new technology that's been developed to help businesses reduce their environmental impact and manage their waste collection more efficiently. Pello system monitors the fill-level of your trash cans and provides real-time information on the dumpsters' contents and location. It also tells if the container has been contaminated and sends pickup alerts when a collection is due.

Recycling Robots: AI robotics allows for more efficient waste sorting in recycling centers and helps to divert as many recyclable materials away from landfills as possible. It also allows waste management companies to operate longer hours or even stay open 24/7, efficiently increasing the amount of waste processed.

Solar-Powered Trash Compactors: Solar-powered trash compactors compress trash as it accumulates inside a dumpster to increase capacity. This allows smart containers to hold up to five times more than traditional trash bins. As well as compressing waste, solar-powered trash compactors have built in waste level sensors. These sensors transmit data on the capacity of the bins, allowing users to schedule pickups and streamlining the collection process.

Conclusion

Effective waste processing technologies are indispensable for achieving sustainable solid waste management in rapidly urbanizing regions like India. While the sector continues to face persistent challenges such as inadequate collection systems, poor segregation practices, insufficient treatment infrastructure, and governance constraints, the growing volume of municipal waste also presents substantial opportunities. Advancing resource recovery, integrating waste-to-energy solutions, formalizing the informal recycling sector, and strengthening policy implementation can significantly enhance environmental quality and public health. A strategic combination of decentralized recycling and composting systems with centralized engineered facilities can offer technological flexibility suited to India's diverse socio-economic conditions. Ultimately, transitioning toward a circular economy where waste is viewed as a resource rather than a liability will require coordinated investment, technological innovation, and strong institutional commitment. Improving waste processing is therefore not only an environmental imperative but also a catalyst for sustainable urban development and long-term resilience.

References

Alsulaili A, Ali O, Alenezi N, Dabbous A N. 2025. Selection of municipal solid waste disposal technology using the Analytic Hierarchy Process and Genetic Algorithm for Gulf Cooperation Council Countries, *Journal of Engineering Research*, 13(2) 865-873. <https://doi.org/10.1016/j.jer.2024.03.015>.

Zhang Z, Chen Z, Zhang J, Liu Y, Chen L, Yang M, Osman A I, Farghali M, Liu E, Hassan D, Ihara I, Lu K, Rooney D W and Yap P S. 2024. Municipal solid waste management challenges in developing regions: A comprehensive review and future perspectives for Asia and Africa, *Science of The Total Environment*, 930. <https://doi.org/10.1016/j.scitotenv.2024.172794>.

Czeała W, Drozdowski J and Łabiak P. 2023. Modern Technologies for Waste Management: A Review. *Applied Sciences*. 13(15):8847. <https://doi.org/10.3390/app13158847>

Chen D, Zhang Y, Xu Y, Nie Q, Yang Z, Sheng W and Qian G. 2022. Municipal solid waste incineration residues recycled for typical construction materials – a review. *RSC Advances.* **12**(10): 6279-6291. <https://doi.org/10.1039/D1RA08050D>

Du Y, Ju T, Meng Y, Lan T, Han S and Jiang J. 2021. A review on municipal solid waste pyrolysis of different composition for gas production. *Fuel Processing Technology.* **224**(0378-3820):107026. <https://doi.org/10.1016/j.fuproc.2021.107026>

Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, Van Tran T, Peng W and Lam SS. 2021. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. *Environ Chem Lett.* **19**(3):2127-2140. <https://doi.org/10.1007/s10311-020-01177-5>

Dogan E and Demirer G N. 2012. Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste. *Journal of Renewable and Sustainable Energy.* **4**(6):063131. <https://doi.org/10.1063/1.4769203>

Arniello M, Matassa S, Esposito G and Lens PNL. 2023. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. *Trends in Biotechnology.* **41**(0167-7799):197-213. <https://doi.org/10.1016/j.tibtech.2022.07.008>

Hake SL, Damgir RM and Awsarmal PR. 2020. Utilization of Plastic waste in Bitumen Mixes for Flexible Pavement. *Transportation Research Procedia.* **48**(2352-1465):3779-3785. <https://doi.org/10.1016/j.trpro.2020.08.041>

Favaro N and Ceola S. 2021. Glass Cullet. Encyclopedia of Glass Science, Technology, History, and Culture. Ch 9.9. 1179-1189p. <https://doi.org/10.1002/9781118801017.ch9.9>