

Smart Storage and Post-Harvest Management Using Artificial Intelligence

Jagdish Kumawat , Rahul Samota ¹ Sonali Rajput ¹ Sushmita Sain² and Sohan lal Yadav²

¹ Department of Seed Science and Technology, Faculty of Agricultural and Allied Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India.

² High Altitude Plant Physiology Research Center , Faculty of Agricultural and Allied Sciences, Hemvati Nandan Bahuguna Garhwal University, Uttarakhand, India

 kumawatjp2002@gamil.com

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)

1. Introduction: The Post-Harvest Imperative

An estimated 14% of the world's food is lost between harvest and retail, with even higher losses in developing regions due to inadequate storage and handling (FAO, 2022). This post-harvest loss represents not only a profound waste of resources but also a major contributor to food insecurity and economic hardship for producers (Kumar & Kalita, 2017). Traditional storage and monitoring methods, reliant on manual inspection and static environmental controls, are often reactive, inconsistent, and inefficient. The integration of Artificial Intelligence (AI) into post-harvest systems offers a paradigm shift, enabling proactive, precise, and automated management that can significantly mitigate these losses (Gangadharan & Kaur, 2023). This article explores the architecture, applications, and impact of AI-powered smart storage and post-harvest technologies.

2. The Technological Foundation: AI, IoT, and Sensor Networks

Smart post-harvest systems are built on a convergence of core technologies. The Internet of Things (IoT) provides the sensory backbone, deploying a network of wireless sensors to continuously collect real-time data on critical parameters such as temperature, relative humidity, atmospheric gas concentrations (e.g., ethylene, CO₂), and light exposure within storage facilities (Ruiz-Garcia *et al.*, 2021). Computer Vision (CV), a subset of AI, utilizes digital imaging and deep learning algorithms to perform non-destructive, automated inspection of produce for defects, diseases, and ripeness (Zhang *et al.*, 2022). Machine Learning (ML) models form the analytical brain, processing the influx of IoT and CV data to identify patterns, predict outcomes, and make autonomous control decisions (Benos *et*

al., 2021). This integrated ecosystem enables a move from generalized, calendar-based practices to condition-specific, dynamic management.

3. Core Applications of AI in Post-Harvest Management

- **Automated Quality Assessment and Sorting :** Manual sorting is labor-intensive, subjective, and slow. AI-powered computer vision systems can classify produce by size, color, shape, and most importantly, detect surface and subsurface defects (bruises, rots, pest damage) with superior accuracy and speed. Convolutional Neural Networks (CNNs) trained on vast image datasets can grade produce into commercial categories or cull defective items at line speeds, ensuring consistency and reducing human error (Moallem *et al.*, 2017). For instance, hyperspectral imaging combined with ML can identify early-stage fungal infections not visible to the human eye, allowing for pre-emptive removal (Ariana & Lu, 2020).
- **Predictive Analytics for Shelf-Life and Spoilage :** Predicting the remaining shelf-life of perishable goods is critical for inventory management and reducing waste. ML models analyze historical and real-time data streams—including initial quality metrics (from CV), storage conditions (from IoT sensors), and product respiration rates—to forecast the degradation trajectory of individual batches or even pallets (Taheri-Garavand *et al.*, 2021). This enables dynamic “First-Expired, First-Out” (FEFO) logistics, prioritizing the dispatch of produce with the shortest remaining shelf-life, thereby minimizing spoilage during distribution (Mao *et al.*, 2022).
- **Intelligent Climate and Atmosphere Control:** Maintaining optimal storage conditions is paramount for preserving quality. Traditional controlled-atmosphere (CA) storage operates on fixed setpoints. AI transforms this into Adaptive Atmosphere Storage (AAS). Reinforcement Learning algorithms can dynamically adjust temperature, humidity, and gas composition (O₂, CO₂, N₂) in response to real-time sensor data, product load, and external weather forecasts (Hertog *et al.*, 2021). This optimizes the storage environment in real-time, minimizing energy consumption while maximizing preservation outcomes for specific produce types (Mastorakis *et al.*, 2022).
- **Supply Chain Traceability and Blockchain Integration:** AI enhances traceability by automating data capture and verification. Computer vision can read and verify labels, while IoT sensors provide an immutable record of the environmental history of a product from farm to store. When integrated with

blockchain technology, this creates a transparent, tamper-proof digital ledger (Kamilaris *et al.*, 2019). Consumers can scan a QR code to access the complete provenance and storage history, bolstering food safety and trust, while managers can instantly pinpoint the source of contamination or quality breaches (Tian, 2022).

4. Documented Impacts and Benefits

- **Quantitative Reduction in Losses:** Implementations consistently report significant reductions in post-harvest losses. A pilot project using AI-driven climate control for apple storage in China demonstrated a 30% reduction in weight loss and spoilage compared to conventional CA storage (Wang *et al.*, 2023). Similarly, AI-based sorting systems for potatoes and tomatoes have been shown to reduce waste from defective produce by over 25% while improving pack-out quality (ElMasry & Nakauchi, 2021).
- **Enhancement of Food Safety and Quality:** By enabling continuous monitoring and early defect detection, AI systems prevent the spread of pathogens and spoilage organisms within storage chambers. Predictive models for mycotoxin formation in grains, based on storage humidity and temperature data, allow for pre-emptive interventions, safeguarding consumer health (Jin *et al.*, 2022). Consistent maintenance of optimal conditions preserves nutritional content, texture, and flavor for longer durations (Goyal *et al.*, 2023).
- **Operational Efficiency and Economic Gains:** Automation reduces dependency on manual labor and minimizes operational costs associated with waste disposal and unsellable inventory. Energy-smart AI controllers for refrigeration can lower electricity consumption by 15-20% (Mastorakis *et al.*, 2022). Furthermore, by ensuring higher-quality produce reaches the market, farmers and distributors can command better prices and strengthen brand reputation (Benos *et al.*, 2021).

5. Challenges and Future Directions

- **Barriers to Adoption:** Widespread implementation faces significant hurdles. The high initial capital investment for sensors, hardware, and AI software is prohibitive for smallholder farmers and small-scale cooperatives (Bourke *et al.*, 2022). There is a notable skills gap, with a shortage of personnel trained to operate and maintain these complex systems, particularly in rural areas. Data-related challenges include the need for large, labeled datasets to train robust models and concerns over data privacy and ownership (Wolfert *et al.*, 2022).

- **Emerging Trends and Research Frontiers:** Future advancements are likely to focus on edge AI, where lightweight ML models run directly on IoT devices, reducing latency and reliance on constant cloud connectivity (Ray, 2023). Explainable AI (XAI) is gaining importance to make algorithmic decisions transparent and trustworthy for users. Furthermore, digital twin technology—creating a virtual, real-time replica of a physical storage facility—will allow for advanced simulation, optimization, and failure prediction without risk to actual inventory (Li *et al.*, 2023).

6. Conclusion

The integration of Artificial Intelligence into post-harvest management and storage represents a fundamental leap forward in the global effort to combat food loss and enhance supply chain resilience. By providing unprecedented capabilities in real-time monitoring, predictive analytics, and automated control, AI-driven systems directly address the inefficiencies that have long plagued this critical phase of the food system. While challenges of cost, accessibility, and technical capacity remain substantial, the proven benefits in reducing waste, improving quality, and increasing economic returns make a compelling case for continued investment, innovation, and collaborative efforts to democratize this transformative technology. The future of sustainable agriculture and food security is inextricably linked to the intelligent management of what is produced after the harvest (Gangadharan & Kaur, 2023).

References

Ariana, D. P., & Lu, R. (2020). Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. *Computers and Electronics in Agriculture*, 179, 105822.

Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine Learning in Agriculture: A Comprehensive Updated Review. *Sensors*, 21(11), 3758.

Bourke, T., O'Rourke, E., & O'Reilly, P. (2022). The digital divide in smart agriculture: Challenges and opportunities for smallholders. *Journal of Rural Studies*, 94, 336-344.

ElMasry, G., & Nakauchi, S. (2021). Machine vision and AI in postharvest operations: Current applications and future potentials. In *Postharvest Technology of Perishable Horticultural Commodities* (pp. 571-601). Woodhead Publishing.

FAO. (2022). The State of Food and Agriculture 2022. Food and Agriculture Organization of the United Nations.

Gangadharan, A., & Kaur, J. (2023). AI-powered Agri-supply Chains: A Review on Post-harvest Loss Reduction. *Artificial Intelligence in Agriculture*, 7, 15-28.

Goyal, S., Sharma, N., & Verma, A. (2023). Artificial intelligence for quality preservation of fruits and vegetables during storage: A review. *Journal of Food Science and Technology*, 60(3), 853-867.

Hertog, M. L. A. T. M., Uysal, I., McCarthy, U., Verlinden, B. M., & Nicolai, B. M. (2021). Smart storage of fruit and vegetables: From current practice to AI-powered future. *Postharvest Biology and Technology*, 181, 111646.

Jin, J., Li, Y., Zhang, L., & Liu, Y. (2022). A predictive model for aflatoxin formation in maize based on machine learning and IoT sensor data. *Food Control*, 133, 108602.

Kamilaris, A., Fonts, A., & Prenafeta-Boldú, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. *Trends in Food Science & Technology*, 91, 640-652.

Kumar, D., & Kalita, P. (2017). Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. *Foods*, 6(1), 8.

Li, H., Wang, J., & Luo, Q. (2023). Digital twin for smart grain storage: Framework and applications. *Computers and Electronics in Agriculture*, 204, 107523.

Mao, H., Chen, L., & Li, Z. (2022). A FEFO-based dynamic distribution planning model for fresh food with shelf-life prediction using machine learning. *Expert Systems with Applications*, 198, 116805.

Mastorakis, G., Ksiazek, K., & Śliwiński, M. (2022). Energy-efficient management of cold storage using reinforcement learning. *Applied Energy*, 308, 118366.

Moallem, P., Serajoddin, A., & Pourghassem, H. (2017). Computer vision-based apple grading for fruit quality evaluation using multi-class SVM. *International Journal of Computer Science and Network Security*, 17(4), 18-24.

Ray, P. P. (2023). A review on edge AI for smart agriculture: Concepts, frameworks, and applications. *Internet of Things*, 22, 100779.

Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, J. I. (2021). The role of IoT and sensor networks in the cold chain logistics. In Sustainable Food Supply Chains (pp. 265-280). Academic Press.

Taheri-Garavand, A., Fatahi, S., & Omid, M. (2021). An integrated computer vision and machine learning approach for real-time prediction of strawberry fruit shelf-life. *Journal of Food Engineering*, 299, 110503.

Tian, F. (2022). A blockchain-based traceability system for agro-food supply chain. *Journal of Cleaner Production*, 331, 129994.

Wang, Y., Zhang, X., & Li, D. (2023). Implementation of an AI-based adaptive control system for apple CA storage and its effect on quality preservation. *Postharvest Biology and Technology*, 195, 112158.

Wolfert, S., Soma, K., & Scholten, H. (2022). AI in agri-food systems: A survey of current challenges and future pathways. *NJAS: Impact in Agricultural and Life Sciences*, 94(1), 1-20.

Zhang, B., Huang, W., Wang, C., & Gong, L. (2022). Deep learning in fruit and vegetable defect detection: A comprehensive review. *Computers and Electronics in Agriculture*, 203, 107456.