

Is Oxidative Stress the Root Cause of Multiple Diseases?

Riya Gupta*✉, Ruhi Thakur

School of Biological and Environmental Sciences, Shoolini University, Solan

✉ researcher.riya99@gmail.com

**This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)*

"Oxidative stress may not light the first spark of every disease, but it certainly fuels the fire that allows disease to spread, persist, and worsen"

In the current era of biomedical research, diseases are now understood as interrelated, multifactorial states controlled by common molecular pathways rather than as discrete, organ-specific problems. Oxidative stress is one of these processes that appears frequently in a variety of clinical conditions. Oxidative stress frequently appears as a contributing factor in a variety of conditions, including diabetes, Alzheimer's disease, liver fibrosis, and cardiovascular dysfunction. This raises an important question: Is oxidative stress the underlying cause of multiple diseases, or is it just a common outcome of underlying pathological processes?

Reactive oxygen species—including superoxide anion ($O_2\bullet^-$), hydrogen peroxide (H_2O_2), and hydroxyl radicals ($\bullet OH$)—are naturally produced during normal cellular metabolism, particularly in mitochondria. Under physiological conditions, ROS serve important roles in cell signaling, immune defense, and redox regulation. However, excessive ROS generation or impaired antioxidant defenses disrupt redox homeostasis, leading to oxidative damage of lipids, proteins, and nucleic acids.

This article explores the concept of oxidative stress as a central biological phenomenon, examines its mechanistic role in disease initiation and progression, and evaluates whether it can be considered a fundamental cause of multiple diseases.

Understanding Oxidative Stress: A Molecular Perspective

Sources of Reactive Oxygen Species

ROS originate from both **endogenous** and **exogenous** sources. Endogenously, mitochondria represent the primary source due to electron leakage from the electron transport chain. Other cellular contributors include peroxisomes, cytochrome P450 enzymes, NADPH oxidases (NOX), and inflammatory cells such as neutrophils and macrophages. Exogenous sources include environmental pollutants, cigarette smoke, radiation, pesticides, heavy metals, fluoride exposure, and certain drugs. Chronic exposure to these stressors can overwhelm antioxidant systems, tipping the balance toward oxidative stress.

Antioxidant Defense Systems

Cells possess a sophisticated antioxidant defense network comprising:

- **Enzymatic antioxidants:** superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)
- **Non-enzymatic antioxidants:** glutathione, vitamins C and E, flavonoids, carotenoids

Disruption in either ROS production or antioxidant capacity leads to sustained oxidative stress, creating a cellular environment conducive to disease development.

Oxidative Stress and Cellular Damage

Oxidative stress exerts its pathological effects primarily through damage to fundamental biomolecules:

Lipid Peroxidation

ROS attack polyunsaturated fatty acids in cell membranes, leading to lipid peroxidation and formation of toxic aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). These byproducts compromise membrane integrity and disrupt cellular signaling.

Protein Oxidation

Oxidative modification of proteins alters enzyme activity, receptor function, and structural integrity. Accumulation of oxidized proteins is a hallmark of aging and neurodegenerative disorders.

DNA Damage

ROS-induced DNA lesions include base modifications, strand breaks, and mitochondrial DNA mutations. Persistent DNA damage contributes to genomic instability, carcinogenesis, and cell death.

Oxidative Stress in Major Human Diseases

Neurodegenerative Diseases

Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease show profound oxidative damage in the brain. The brain's high oxygen consumption, lipid-rich composition, and limited antioxidant capacity make it particularly vulnerable. In Alzheimer's disease, oxidative stress precedes amyloid- β plaque formation and tau hyperphosphorylation, suggesting it plays an early pathogenic role. Mitochondrial dysfunction, impaired glucose metabolism, and neuroinflammation further exacerbate oxidative damage, creating a vicious cycle that accelerates neuronal loss.

Cardiovascular Diseases

Oxidative stress is central to the pathogenesis of hypertension, atherosclerosis, and heart failure. ROS promote endothelial dysfunction by reducing nitric oxide bioavailability, leading to vasoconstriction and inflammation. Oxidized low-density lipoprotein (oxLDL) plays a critical role in atherogenesis, triggering macrophage activation and foam cell formation. Here, oxidative stress acts both as an initiator and amplifier of vascular pathology.

Metabolic Disorders and Diabetes

In metabolic diseases such as type 2 diabetes mellitus, chronic hyperglycemia enhances ROS production through glucose autoxidation, protein glycation, and mitochondrial overload. Oxidative stress contributes to insulin resistance, pancreatic β -cell dysfunction, and diabetic complications including nephropathy, neuropathy, and retinopathy.

Liver Diseases

The liver, as a central metabolic and detoxifying organ, is highly susceptible to oxidative stress. Conditions such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, hepatic fibrosis, and hepatocellular carcinoma are strongly associated with ROS-mediated damage. Oxidative stress activates hepatic stellate cells, promotes lipid peroxidation, and triggers inflammatory and fibrotic pathways. Environmental toxins, including fluoride and heavy metals, further aggravate oxidative injury in hepatic tissues.

Cancer

Cancer development is intricately linked to oxidative stress. ROS contribute to tumor initiation through DNA mutations and genomic instability, while also supporting tumor progression by modulating signaling pathways involved in proliferation, angiogenesis, and metastasis. Interestingly, cancer cells maintain a delicate balance—elevated ROS levels promote growth, yet excessive oxidative stress can induce apoptosis. This dual role complicates antioxidant-based therapeutic strategies in oncology.

Oxidative Stress and Aging: A Common Denominator

The **free radical theory of aging** proposes that cumulative oxidative damage over time leads to functional decline and age-related diseases. Although this theory has evolved, oxidative stress remains a key contributor to cellular senescence, mitochondrial dysfunction, and reduced regenerative capacity. Aging itself predisposes individuals to multiple diseases, suggesting oxidative stress may serve as a biological bridge linking aging with chronic pathology.

Is Oxidative Stress the Root Cause or a Common Pathway?

While oxidative stress is undeniably involved in numerous diseases, labeling it as the *root cause* may oversimplify complex disease biology. Most disorders arise from interactions between genetic predisposition, environmental exposure, lifestyle factors, and molecular dysregulation.

Oxidative stress often functions as:

- An **early trigger** (e.g., neurodegeneration)
- A **disease amplifier** (e.g., inflammation, fibrosis)
- A **common downstream pathway** linking diverse etiologies

Thus, oxidative stress may not initiate all diseases independently, but it serves as a **central unifying mechanism** that drives disease progression and severity.

Therapeutic Implications and Challenges

Antioxidant-based therapies have shown promise in experimental models but mixed results in clinical trials. This discrepancy highlights the complexity of redox biology and the need for targeted, context-specific interventions rather than generalized antioxidant supplementation.

Emerging strategies include:

- Targeting mitochondrial ROS
- Modulating redox-sensitive signaling pathways
- Enhancing endogenous antioxidant systems
- Lifestyle interventions (diet, exercise, stress reduction)

Oxidative stress occupies a pivotal position in modern disease biology. While it may not be the singular root cause of all diseases, it undeniably represents a **shared molecular denominator** linking multiple pathological conditions. Its pervasive involvement across organ systems underscores the importance of redox homeostasis in maintaining health. Understanding oxidative stress not as an isolated phenomenon but as an integrative biological process offers new perspectives for disease prevention, diagnosis, and therapy. Future research should focus on precision redox medicine, recognizing oxidative stress as both a marker and a mediator of disease.

References:

Sies H. Oxidative stress: from basic research to clinical application. The American journal of medicine. 1991 Sep 30;91(3):S31-8.

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked?.

Free radical biology and medicine. 2010 Dec 1;49(11):1603-16.

Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nature reviews Drug discovery.

2004 Mar 1;3(3):205-14.

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Caciatore F, Bonaduce D, Abete P.

Oxidative stress, aging, and diseases. Clinical interventions in aging. 2018 Apr 26:757-72.

Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2005 Jan 1;25(1):29-38.