
Disposal Strategies for Environmentally Sound Hazardous Waste Management

Tara Thakur¹, Hukam Chand

Department of Environmental Science, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan-173230 (H.P.) India

 hukamevs2008ysp@gmail.com

**This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)*

Abstract

Hazardous waste generation has increased globally due to expanding industrial activities, health services, agriculture and urban development. Through soil contamination, groundwater pollution and toxic air emissions, improper handling of such wastes presents major risks to human health and the quality of the environment. Therefore, in order to reduce ecological hazards and guarantee regulatory compliance, effective collection and disposal are crucial. The collection and disposal of hazardous waste, including segregation, labelling, manifest tracking, transportation and advanced treatment methods like secure landfilling, chemical treatment, incineration, pyrolysis, biological treatment and deep-well injection, are briefly described in this article. In order to safeguard public health and advance environmental safety, emphasis is made on the significance of scientific waste management techniques, sustainability and legislative frameworks.

Keywords Hazardous waste, secure landfilling, public health and environmental safety.

INTRODUCTION

Hazardous waste has become a major global environmental challenge due to rapid industrialization, urbanization, and the extensive use of chemicals in various sectors such as manufacturing, healthcare, agriculture and energy. When managed incorrectly, hazardous wastes can pose serious risks to human health and environmental stability due to characteristics including toxicity, flammability, corrosiveness, reactivity and infectiousness (UNEP, 2023). Millions of tons of hazardous waste are produced globally each year, according to reports and improper handling can result in air pollution, soil contamination, water pollution, and serious health problems like neurotoxic, carcinogenic and reproductive consequences (WHO, 2021; Singh & Kumar, 2020). The scientific management of hazardous waste requires a comprehensive system involving segregation, labelling, safe storage, manifest tracking, transportation, treatment and environmentally sound disposal. Secure landfilling, chemical fixation, thermal

destruction (pyrolysis & incineration), biological treatment, plasma gasification and deep-well injection are examples of sustainable disposal techniques that have developed to lessen threats to human exposure and the environment (Ritzkowski & Stegmann, 2019). Furthermore, in accordance with the principles of a circular economy and legal frameworks like the Solid Waste Management Rules (2016) and Hazardous and Other Wastes (Management and Transboundary Movement) Rules (2016) in India, contemporary hazardous waste management places an emphasis on waste minimization, recycling of valuable constituents and resource recovery (MoEFCC, 2016). Understanding effective collection and disposal techniques is crucial for both public safety and environmental sustainability given the growing amounts and complexity of hazardous waste. Pollution prevention, industrial compliance, climate resilience and sustainable development objectives (SDG 3, 6, 12 and 13) will all be supported by bolstering hazardous waste management systems. Thus, with a focus on safe, scientific and legally compliant procedures, this article outlines key tactics, technologies, problems and solutions for hazardous waste collection and disposal.

COLLECTION OF HAZARDOUS WASTE

The waste generator, or a specialised hauler, generally collects the hazardous waste for delivery to a treatment or disposal site.

The loading of collection vehicles is completed in either of the following ways:

- I. Wastes stored in large-capacity tanks are either drained or pumped into collection vehicles;
- II. Wastes stored in sealed drums or sealed containers are loaded by hand or by mechanical equipment onto flatbed trucks.
- III. The stored containers are transported unopened to the treatment and disposal facility.
- IV. To avoid accidents and the possible loss of life, two collectors should be assigned when hazardous wastes are to be collected.
- V. The equipment used for collection vary with the waste characteristics.

Waste Category	Collection Equipment
----------------	----------------------

Radioactive substances	Trucks and rail carriers with special markings; heavy-duty lifting equipment to manage lead containers covered in concrete.
Toxic chemicals	Railroad tank carriages with corrosion-resistant inner lining (glass, fiberglass, rubber); tractor-trailer tank trucks; and flatbed trucks for storing drums.
Biological wastes	Flatbed trucks for biohazard drums and standard packer collecting trucks with safety features to prevent direct contact.
Flammable wastes	Flame-warning indicators, safety labels and high-visibility danger markings on flatbed trucks.
Explosives	For safety, large flatbed trucks must avoid residential areas and adhere to stringent transit route regulations.

- HWs must be kept on site in bags or containers in a covered place until they are disposed of for recycling, treatment or landfilling.
- Storage is allowed for a maximum of 90 days.

DISPOSAL OF HAZARDOUS WASTE

Why Disposal Is Needed

1. To reduce pollution in the environment.
2. To avoid hazards to public health and the workplace.
3. To lessen ecological damage over time.
4. To adhere to sustainability objectives and environmental requirements.

Methods for safe disposal of Hazardous waste

1. Deep well injection

It is a hazardous waste disposal technique in which liquid toxic waste is pumped deep into permeable underground geological formations, located typically 1–5 km below the earth's surface. These formations—often porous sandstone or limestone—are confined by impermeable rock layers such as shale, which prevent upward migration of contaminants. The method, which creates an isolated underground environment where pollutants stay chemically and physically confined, is commonly used for the long-term disposal of concentrated chemical waste, petrochemical effluents, oil refinery brines and industrial liquid waste. Deep well injection is seen as an affordable option for businesses producing significant amounts of liquid waste because of its high capacity and continuous operation.

However, careful geological selection, well design, pressure monitoring, and long-term maintenance are essential to prevent subsurface contamination and ensure environmental safety (WHO, 2022).

Advantages-

- reduces pollution of surface and groundwater by separating dangerous liquids at deep depths.
- economical and appropriate for managing substantial and ongoing amounts of liquid waste.
- lessens the requirement for infrastructure for above-ground storage and treatment.

Concerned Risks- Groundwater Contamination: Subterranean drinking water supplies may get contaminated if well integrity is compromised by corrosion, poor construction or undiscovered geological faults.

Examples: The chemical, petroleum, and pharmaceutical sectors in the US employ more than 500 Class I deep injection wells to dispose of hazardous waste(USEPA, 2019). Texas, Louisiana and Oklahoma are the top states using deep well injection to dispose of brine and effluent from refineries.

2. Detonation

It is a method of destroying hazardous waste that entails carefully monitoring the controlled detonation of extremely reactive or explosive waste materials. This technique is mostly used for wastes like outdated ammunition, military explosives, propellants, pyrotechnics, explosive mining chemicals and faulty fireworks that cannot be properly neutralized, stored, or burned because of their high detonation sensitivity. In order to transform unstable substances into less hazardous gaseous byproducts and residue, trash is deposited in a predetermined detonation zone or chamber and burned using detonators to release energy quickly. Detonation removes the long-term risk of abandoned or unstable explosive trash and stops unintentional explosions during storage. Protective barriers and emission control systems are used in distant detonation facilities, blast-proof chambers or subterranean detonation pits to safeguard both the environment and the personnel.

Advantages

- safely neutralizes extremely explosive and unstable garbage that conventional disposal methods are unable to handle.
- Instant demolition reduces long-term risks to the environment and public safety.
- permits the transportable or on-site disposal of industrial and military explosive stocks.

Limitations

- produces heat, loud noise, and shock waves, all of which call for stringent safety zoning.
- may, in the absence of appropriate emission controls, discharge harmful gases (NO_x, SO_x and particulate matter) into the atmosphere.
- raises operating expenses since it calls for specialized facilities, knowledgeable staff and remote locations.

- If improperly confined, potentially detrimental to nearby habitats and wildlife.

Examples

- Explosive detonation chambers are used by the Indian Army and DRDO to get rid of outdated propellants and munitions, U.S. Department of Defense (DoD, 2021).
- Explosive weapons Disposal (EOD) units are used by the U.S. Department of Defense (DoD) to destroy recovered wartime weapons and excess explosives, European Defence Agency (EDA, 2019).
- The European Defence Agency (EDA) disposes of anti-personnel mines and malfunctioning military pyrotechnics via controlled open explosion.

3. Engineered storage

It refers to the controlled and secure containment of hazardous waste in scientifically designed facilities, such as storage tanks, vaults, silos, drums, bunkers or specially constructed underground chambers. Hazardous waste that cannot be transported, processed or permanently disposed of is handled using this technique. To stop waste from interacting with the environment, engineered storage facilities are constructed with corrosion-resistant materials, multi-layer liners, leak-detection sensors, ventilation systems and radiation/chemical shielding. Until long-term disposal or treatment becomes practical, the main goal is to separate hazardous pollutants from soil, water and air. This method is particularly important for radioactive waste, poisonous metals, persistent organic pollutants (POPs) and highly reactive compounds that, if discharged into the environment, might endanger human health and the ecosystem in the long run.

Key Design Principles

- ❖ Hazardous waste containment and separation from soil, water and air.
- ❖ Compatibility of materials to stop corrosion and chemical reactions with waste.
- ❖ Systems for monitoring and detecting leaks to detect contamination early.
- ❖ Regulated security and access to prevent accidents and unwanted entry.
- ❖ Control of pressure and ventilation for gaseous and volatile hazardous waste.
- ❖ On-site emergency management and spill response readiness.
- ❖ Documentation and regulatory compliance in accordance with national and international safety standards.

Advantages

- Provides high containment protection for extremely toxic substances that cannot be treated immediately.
- Allows safe long-term monitoring and controlled storage until final disposal technology is available.

- Reduces risk of environmental contamination and accidental exposure.

Limitations

- requires ongoing maintenance, supervision, and observation, which is expensive.
- does not eliminate trash; the risk persists until permanent disposal is accomplished.
- Catastrophic pollution might result from infrastructure failure (corrosion, fractures, leaking).
- needs a huge land area and rigorous adherence to regulations.

Examples

- Underground engineered vaults in Finland (Onkalo) and France (Cigéo) for permanent radioactive waste storage (IAEA, 2021).
- For low- and intermediate-level radioactive waste, BARC (Bhabha Atomic Research Centre), India, employs specially designed storage vaults.
- Chemical sludge and waste containing heavy metals are stored in TSDF facilities located in Gujarat, Maharashtra and Himachal Pradesh (CPCB, 2023).

4. Engineered Secure Landfills

Land burial is a hazardous waste disposal method in which solid toxic waste is buried in specially engineered and scientifically designed landfill facilities to prevent contamination of soil, groundwater and surrounding ecosystems. In contrast to regular municipal landfills, designed secure landfills employ a multi-barrier protection system that includes impermeable soil cover, gas venting systems, HDPE geo-membranes, clay liners, leachate collecting drains and environmental monitoring wells. To reduce volume and environmental danger, trash such as chemical sludge, heavy-metal-rich residues, incinerator ash, asbestos, pesticide waste and other non-combustible hazardous materials is compacted and sealed in methodical layers. To guarantee long-term stability and containment, the landfill is sealed after closure and observed for decades.

Advantages

- It offers long-term confinement with little human exposure and is appropriate for huge amounts of solid hazardous waste.
- Comparatively inexpensive versus more sophisticated treatment methods.

Limitations

- Risk of leachate leakage if liners break down or degrade over time needs a lot of land, which could not be accessible in industrial or urban areas.
- Even after closure, long-term monitoring and maintenance expenses are still substantial.
- Fear of pollution and diminished land value has led to public protest (NIMBY impact).

Examples

- Gujarat (TSDF dumps in Sachin and Nandesari) for petrochemical and chemical waste.
- Himachal Pradesh (Baddi–Barotiwala–Nalagarh TSDF) for industrial wastes and heavy metals.

5. OCEAN DUMPING

Ocean dumping refers to the disposal of hazardous waste by intentionally releasing, discharging, or depositing waste materials into the sea or ocean. In the past, it was used to dispose of chemical waste, industrial sludge, radioactive materials, toxic ash, sewage sludge, ship-generated oil waste and military bombs since the seas provided a high dilution capacity and were seen as a "safe sink." However, there is now scientific proof that disposing of hazardous waste in marine environments causes irreparable harm to coral reefs and oceanic food chains, as well as bioaccumulation of persistent poisons, destruction of marine biodiversity and contamination of seafood. Ocean dumping is either prohibited or severely limited globally due to its detrimental ecological effects, and contemporary environmental governance encourages zero-dumping of hazardous items into seas.

Environmental Impacts

- Toxic chemical buildup in marine animals, fish, shellfish and plankton.
- Coral reef and coastal habitat damage that results in the extinction or decrease of species.
- Heavy metal and POP biomagnification in the food chain, which exposes people and animals.
- Seawater and seabed pollution that has persisted for decades and is irreversible.

Examples

- The United States disposed of chemical and radioactive waste barrels off the coast of California before laws were put in place (1940s–1970s).
- Chemical weapons and nuclear reactor waste have traditionally been dropped into the Pacific and Arctic Oceans by Japan and Russia.

Ocean dumping is prohibited for hazardous waste in the majority of countries and is currently acknowledged as one of the most damaging disposal techniques. Instead of using sea dumping, modern environmental management encourages recycling, resource recovery, trash reduction, chemical treatment, secure landfills and designed storage Although controlled landfill methods have been shown to be sufficient for disposing of municipal solid waste and small amounts of hazardous waste, they are not suitable for disposing of large amounts of hazardous waste for the following reasons:

- potential percolation of toxic liquid waste to ground water;
- dissolution of solids followed by leaching and percolation to ground water;

- dissolution of solid hazardous wastes by acid leachate from solid waste, followed by leaching and percolation to ground water;
- potential for undesirable reactions in the landfill that could result in the development of toxic or explosive gases;
- volatilization of hazardous waste.

Conclusion:

Environmentally sound hazardous waste management relies on integrated disposal strategies that minimize environmental and human health risks while promoting regulatory compliance and sustainability. Advanced treatment methods—such as physicochemical stabilization, secure landfilling, high-temperature incineration with emission controls, and resource recovery where feasible—significantly reduce toxicity, mobility, and persistence of hazardous constituents. Source segregation, waste minimization, and life-cycle-based decision-making further enhance the effectiveness of disposal systems. Strengthening institutional frameworks, adopting best available technologies, and ensuring continuous monitoring are essential to prevent soil, water, and air contamination. Overall, scientifically guided and policy-supported disposal strategies are critical for achieving long-term environmental protection and public health safety.

Future Aspects:

Emerging advances in hazardous waste management, such as IoT-based manifest tracking, GIS-enabled transportation monitoring, RFID-tagged trash containers, AI-driven segregation systems and digital regulatory compliance platforms, will increase transparency and efficiency. Supercritical water oxidation, nanotechnology-assisted detoxification, genetically enhanced microbial bioremediation, and energy recovery from hazardous residues are all expected to reduce toxicity while also converting waste into valuable resources like electricity, fuel and industrial raw materials. Hazardous waste management may make a substantial contribution to national environmental goals and the Sustainable Development Goals (SDG 3, 6, 12 and 13) by integrating sophisticated technology, robust legislative frameworks, and sustainable industrial practices.

References

Central Pollution Control Board (CPCB). Hazardous and Other Wastes Management Rules, 2016: Compliance Report (Gujarat Chapter).

Gujarat Pollution Control Board(GPCB). Annual Environmental Status Report: Ankleshwar Industrial Cluster (2023-2024).

Central Pollution Control Board (CPCB, 2023). Guidelines for Hazardous Waste Treatment, Storage & Disposal Facilities (TSDF).

European Defence Agency (EDA, 2019). Best Practices for Controlled Open Detonation of Ammunition Waste.

International Atomic Energy Agency (IAEA, 2021). Radioactive Waste Storage and Disposal Safety Standards.

MOEFCC. (2016). *Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016*. Ministry of Environment, Forest and Climate Change, Government of India.

Ritzkowski, M., & Stegmann, R. (2019). *Landfilling and landfill technologies*. Waste Management, 85, 1–12.

Singh, P., & Kumar, R. (2020). Human health implications of hazardous waste exposure: A systematic review. *Environmental Monitoring and Assessment*, 192(6), 1–18.

U.S. Department of Defense (DoD, 2021). Explosive Ordnance Disposal Technical Manual.

U.S. Environmental Protection Agency (EPA). (2019). Underground Injection Control (UIC) Program – Class I Injection Wells for Hazardous Waste.

U.S. Environmental Protection Agency (EPA). (2020). Guidelines for vehicles that transport and collect hazardous waste.

United Nations Environment Programme (UNEP). (2023). Guidelines for the transportation and collection of hazardous waste in an environmentally responsible manner.

WHO. (2021). *Health risks of hazardous waste and toxic pollutants*. World Health Organization.

World Health Organization (WHO), 2021. Safe Management of Hazardous and Biomedical Wastes.

World Health Organization (WHO, 2022). Guidelines for Industrial Liquid Waste Disposal.